ANALISIS KESTABILAN TEROWONGAN BEKAS TAMBANG BAWAH TANAH WATU JONGGOL TERHADAP GETARAN KENDARAAN

  • S. M. Sari Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • S. Saptono Universitas Pembangunan Nasional "Veteran" Yogyakarta
Keywords: PPV, getaran kendaraan, SSR, SRF, tambang bawah tanah

Abstract

Terowongan bekas tambang bawah tanah yang berada di bawah jalur jalan raya berpotensi mengalami ketidakstabilan akibat beban dinamis lalu lintas, terutama tanpa sistem penyanggaan yang memadai. Penelitian ini mengevaluasi pengaruh getaran kendaraan terhadap kestabilan terowongan di Watu Jonggol, Kulon Progo, melalui pengukuran getaran lapangan dan analisis numerik metode finite element. Lalu lintas di atas terowongan didominasi kendaraan ringan dengan sesekali kendaraan berat, sehingga intensitas getaran bervariasi sesuai jenis dan beban kendaraan yang melintas. Getaran permukaan yang direkam menggunakan Micromate Instantel pada delapan titik di atas terowongan menghasilkan nilai PPV transversal 15,6 mm/s, vertikal 10,2 mm/s, dan longitudinal 12,8 mm/s sebagai representasi intensitas getaran aktual. Analisis numerik 2D menggunakan RS2 dengan kriteria keruntuhan Hoek–Brown dan metode Shear Strength Reduction (SSR) menunjukkan bahwa nilai Strength Reduction Factor (SRF) pada kondisi statis sebesar 1,32 pada dinding dan 2,35 pada crown, kemudian menurun menjadi 1,30 dan 1,67 pada kondisi getaran rata-rata, serta 1,26 dan 1,66 pada getaran maksimum. Kontur tegangan, deformasi, dan zona yielded memperlihatkan bahwa pengaruh dinamis terutama terkonsentrasi pada dinding dan crown. Secara keseluruhan, hasil analisis menunjukkan bahwa terowongan masih berada dalam kondisi stabil.

References

Salmi, E. F., & Sellers, E. J. (2022). A rock engineering system based abandoned mine instability assessment index with case studies for Waihi gold mine. Eng Geol, 310.

Lee, H.-W., Lee, S.-J., & Choi, S.-O. (2023). Evaluation of traffic vibration effect for utilization of abandoned mine openings. Tunnel & Underground Space, 33(2), 95–107.

Le Gonidec, Y., Kergosien, B., Wassermann, J., Jaeggi, D., & Nussbaum, C. (2021). Underground traffic-induced body waves used to quantify seismic attenuation properties of a bimaterial interface nearby a main fault. J Geophys Res Solid Earth, 126(8).

California Department of Transportation. (2013). Transportation and construction vibration guidance manual. Retrieved from http://www.dot.ca.gov/hq/env/noise/index.htm.

Xie, L., Yu, Q., Liu, J., Wu, C., & Zhang, G. (2024). Prediction of ground vibration velocity induced by long hole blasting using a particle swarm optimization algorithm. Applied Sciences (Switzerland), 14(9).

Wang, X., Hou, X., Yuan, W., He, C., Sarfarazi, V., & Fan, H. (2024). Attenuation of blast-induced vibration on tunnel structures. Geohazard Mechanics, 2(3), 153–163.

Nateghi, R., Kiany, M., & Gholipouri, O. (2009). Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration. Tunnelling and Underground Space Technology, 24(6), 608-616.

Queensland Department of Transport and Main Roads. (2025). TN03: Guidelines for construction-induced ground vibration on structures. Technical Note.

Duvall, W. I., & Fogelson, D. E. (1962). Review of criteria for estimating damage to residences from blasting vibrations. U.S. Bureau of Mines, Report of Investigations 5968.

Dowding, C. H. (1980). Structure response and damage produced by ground vibration from surface mine blasting. Retrieved from https://www.researchgate.net/publication/255119822.

Volpe, J. A. (2018). Transit noise and vibration impact assessment manual.

German Institute for Standardization. (n.d.). Vibrations in buildings - Part 3: Effects on structures. Retrieved from https://www.din.de.

Luo, Y., Wei, X., Huang, J., Zhang, G., Bian, X., & Li, X. (2021). PPV distribution of sidewalls induced by underground cavern blasting excavation. Sci Rep, 11(1).

Xue, F., Xia, C., Li, G., Jin, B., He, Y., & Fu, Y. (2019). Safety threshold determination for blasting vibration of the lining in existing tunnels under adjacent tunnel blasting. Advances in Civil Engineering, 2019.

Rocscience Inc. (2004). Application of the finite element method to slope stability. Toronto.

Maryanto, S. (2015). Perkembangan sedimentologi batugamping berdasarkan data petrografi pada Formasi Sentolo di sepanjang lintasan Pengasih, Kulonprogo. Geological Engineering Diponegoro University.

Cenek, P. D., Sutherland, A. J., & McIver, I. R. (2012). Ground vibration from road construction. NZ Transport Agency.

Yang, R. (2025). Relationship between peak particle acceleration, velocity and displacement of blast vibration.

Alcudia, A. D., Stewart, R. R., Eliuk, N., & Espersen, R. (2007). Vibration monitoring and air pressure monitoring of seismic sources.

Instantel. (2018). Micromate vibration and overpressure monitor – Operator manual.

Rocscience Inc. (2024). RS2 overview. Retrieved from https://www.rocscience.com/help/rs2/overview/rs2-overview.

Slama, A., El-Amin, M. F., & Kou, J. (2022). Numerical modeling of nanoparticle transport in porous media. Elsevier.

Hammah, R. E., Curran, J. H., Yacoub, T. E., & Corkum, B. (2005). Shear strength reduction technique for finite element slope stability analysis. International Journal of Geomechanics, 5(4), 1–9.

Rocscience Inc. (2024). Yielded elements (RS2 documentation). Retrieved from https://www.rocscience.com/help/rs2/documentation/rs2-interpret/data-contours/basic-data/yielded-element.

Published
2025-11-29