KAJIAN PETROLOGI, GEOKIMIA, DAN POTENSI MINERAL STRATEGIS PADA FORMASI GRANIT TANTAN, GEOPARK MERANGIN, JAMBI
Abstract
Granitoid merupakan salah satu batuan yang berpotensi membawa mineral strategis, seperti tembaga, timah dan aluminium, yang perannya semakin krusial sebagai komponen kunci dalam pengembangan teknologi modern di era transisi energi dan digitalisasi global. Formasi Granit Tantan (Batuan Granitoid) yang tersingkap di kawasan Geopark Merangin menjadi bukti adanya proses magmatisme dan potensi mineralisasi hidrotermal. Meskipun demikian, penelitian karakteristik granit Tantan berdasarkan petrografi dan geokimia masih sangat terbatas. Penelitian ini bertujuan mengidentifikasi karakter petrologi, geokimia, serta potensi mineralisasi logam dasar pada Formasi Granit Tantan melalui analisis petrografi, mineragrafi, XRF, dan XRD terhadap tiga sampel batuan yang diambil dari Situs Air Batu (AB), Teluk Tilan (TL), dan Jeram Ladeh (JL) menggunakan metode grab dan chip sampling. Hasil analisis petrografi menunjukkan komposisi Kuarsa 41–51%, Plagioklas 24–43%, dan mineral mafik 8–35%, dengan klorit sebagai mineral indikator alterasi propilitik. Analisis mineragrafi mengidentifikasi keterdapatan kalkopirit (0,1%), covelit (<0.1%), pirit (1,1%), magnetit (2,9%), dan hematit (1,2%) yang menunjukkan bukti adanya sistem mineralisasi hidrotermal. Hasil XRF menunjukkan rasio A/CNK (0,99–1,28), dua sampel (AB dan JL) diklasifikasikan sebagai granit tipe-I (metaluminous), sedangkan satu sampel (TL) tergolong granit tipe-S (peraluminous). Anomali keterdapatan mineralisasi Cu pada granit tipe-S diinterpretasikan sebagai hasil kontaminasi magma atau aktivitas hidrotermal pascaintrusi. Kombinasi granit tipe-I, bukti langsung Kalkopirit, adanya supergen enrichment dan penanda alterasi Klorit menegaskan indikasi kuat terhadap potensi mineralisasi logam strategis Tembaga (Cu). Formasi Granit Tantan penting dalam memahami evolusi magmatisme dan memiliki nilai strategis di kawasan Geopark Merangin.
References
Londoño, J. A. B., Sepúlveda, G. F., & Olivares, E. D. la B. (2024). Strategic Minerals for Climate Change and the Energy Transition: The Mining Contribution of Colombia. Sustainability, 16(1), 83.
Zelandi, M., Sasmita, D., Afifah, P. D., & Hastuti, E. W. D. (2017). Geology and Geotrek Mengkarang: Potential of Mengkarang River as Featured Geotourism in Beding Rejo Village, Merangin Regency Jambi. Proceeding 10th Seminar Nasional Kebumian, 10, 1916–1924.
Gupta, S., & Kumar, S. (2023). Geochemistry, geochronology, and isotopic studies of Paleoproterozoic magmatic rocks from outer Kumaun Lesser Himalaya, India: Implication on petrogenesis and crustal evolution of northern Indian Block. Gondwana Research, 113, 31–52.
Regelous, A., Scharfenberg, L., & De Wall, H. (2021). Origin of s-, a-and i-type granites: Petrogenetic evidence from whole rock th/u ratio variations. Minerals, 11(7), 672.
Gardiner, N. J., Robb, L. J., Morley, C. K., Searle, M. P., Cawood, P. A., Whitehouse, M. J., Kirkland, C. L., & Roberts, N. M. W. (2017). Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar. Scientific Reports, 7(1), 748.
Ariani, R. P., & Utama, H. W. (2022). Petrogenesis and Geological Structure of Tantan Granitoid in Sungai Manau District, Merangin Regency, Jambi Province. EKSPLORIUM, 43(2), 79.
Said, Y. M., Adhitya, B., Siregar, A. D., Utama, H. W., Ritonga, M., & Kurniatoro, E. (2019). Busur Magmatik Granit Tantan-Nagan. Jurnal Geoscience and Engineering, 4(2), 79–85.
Dominy, S. C., Glass, H. J., O’Connor, L., Lam, C. K., Purevgerel, S., & Minnitt, R. C. A. (2018). Integrating the theory of sampling into underground mine grade control strategies. Minerals, 8(6), 232.
Wang, J., Wei, C., Wang, Y., & Zhang, J. (2022). Mineral Chemistry of Biotite and Its Petrogenesis Implications in ca. 2.5 Ga Wangjiazhuang Granitic Pluton, North China Craton. Journal of Earth Science, 33(6), 1535–1548.
Fulignati, P., Paolini, D., Vaggelli, G., Tassara, S., Tapia, J., & Sonne, P. (2023). The propylitic alteration in the Ponce Enriquez Gold Mining district, Azuay province, Ecuador: genetic constraints from a mineral chemistry and fluid inclusions study. Frontiers in Earth Science, 11, 1255712.
Pacey, A., Wilkinson, J. J., & Cooke, D. R. (2020). Chlorite and epidote mineral chemistry in porphyry ore systems: A case study of the northparkes district, New South Wales, Australia. Economic Geology, 115(4), 701–727.
Xiao, B., Chen, H., Hollings, P., Wang, Y., Yang, J., & Wang, F. (2018). Element transport and enrichment during propylitic alteration in Paleozoic porphyry Cu mineralization systems: Insights from chlorite chemistry. Ore Geology Reviews, 102, 437–448.
Naglik, B., Dumańska‐Słowik, M., Toboła, T., Derkowski, P., Habryn, R., & Markowiak, M. (2021). Diversity of pyrite‐hosted solid inclusions and their metallogenic implications—a case study from the myszków mo–cu–w porphyry deposit (The kraków–lubliniec fault zone, poland). Minerals, 11(12), 1426.
Milani, L., Kinnaird, J. A., Broughton, D., Selley, D., Roberts, S., & Hutchinson, D. (2019). Geology and mineralization of the Cu-rich Mumbwa district, a potential IOCG-type system at the eastern margin of the Pan-African Hook batholith, Zambia. Journal of African Earth Sciences, 158, 103513.
Sillitoe, R. H. (2010). Porphyry Copper Systems. Economic Geology, 105, 3–41.
Chávez, W. X. (2021). Weathering of Copper Deposits and Copper Mobility: Mineralogy, Geochemical Stratigraphy, and Exploration Implications. SEG Discovery, (126), 16–27.
Ambrosio, M. R., Azzone, R. G., Tepley, F. J., Ramos, F. C., & Takach, M. K. (2025). Fingerprints of Assimilation and Recharge Processes in a Small Shallow Magma Chamber: Detailed Mineral Elemental and Sr Isotopic Signatures from the Ponte Nova Alkaline Massif, SE Brazil. Journal of Petrology, 66(4), egaf022.
Breiter, K., Broska, I., & Uher, P. (2015). Intensive low-temperature tectono-hydrothermal overprint of peraluminous rare-metal granite: A case study from the Dlhá dolina valley (Gemericum, Slovakia). Geologica Carpathica, 66(1), 19–36.
Gill, R. & Fitton, G. (2022). Igneous rocks and processes: a practical guide. John Wiley & Sons.



